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Stochastic resonance as dithering
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A direct correspondence is demonstrated between the phenomenon of “stochastic resonance” in static
nonlinear systems and the dithering effect well known in the theory of digital waveform coding. It is argued
that many static systems displaying stochastic resonance are forms of dithered quantizers, and that the exis-
tence or absence of stochastic resonance in such systems can be predicted from the effects of “dither averag-
ing” upon their transfer characteristics. Also, results are introduced regarding stochastic resonance in certain
nonlinear systems with memorg.g., hysteretic systems

PACS numbegs): 05.40—a, 02.50-r, 07.05.Hd, 07.50.Qx

I. INTRODUCTION nance, and that this phenomenon corresponds to the dithering
effect as it is conventionally understood. We will not under-
The term “stochastic resonance” is associated with thetake to compare subtractive and nonsubtractive dithering
unexpected increase in output signal-to-noise ratio observegthemes hereseef8,9,13), but will restrict our discussion to
in certain nonlinear static or dynamical systems as the noisBonsubtractive schemes as these are more directly analogous
level at the system input increases. This usage dates back ® the stochastic resonance systems discussed in the physical
the 1981 work of Benzet al[1] in climatic dynamics. Later literature.
the effect was observed in a variety of physical and biologi-
cal systems from ring lasers to neurdr®d. However, the Il. DITHERED QUANTIZING SYSTEMS
important distinction between stochastic resonance in dy- . , ) .
namical versus static nonlinear systems has only been reco%;-_':'gure 1 shows a typical nonsubtractively dithered quan-
nized relatively recently, with Gammaitof8] being the first  UZINg system withsystem input xadditive dither v, quan-
author to directly acknowledge the correspondence betwedi7€r input w=x+ v, system output 3 Q(w), andtotal er-
stochastic resonance and the dithering effect in static sydOF &=y —x. We will assume amultileve) quantizer of the
tems, and that no true resonarnuer seexists in such sys- midtread variety with transfer characteristic
tems. Recently, a thorough theoretical treatment of static
nonlinear systems has been published by Chapeau-Blondeau —A
Quantization operations are required wherever it is neces-
sary to reduce the precision of data prior to storage or transwhere the “floor” operator| | returns the greatest integer
mission, as upon analog-to-digital conversion or arithmeticaless than or equal to its argumef@ther common quantizer
rounding of digital signals. As early as 1962], engineers characterisitics can be treated similarifhe quantizer step
working in the field of picture coding discovered that the size A is commonly referred to as a LSBeast significant
addition of random noise atither prior to gray-scale quan- bit), since a change in input signal level of one step width
tization could modify the statistical character of the attendantorresponds to a change in the LSB of binary coded output.
error (the difference between the input and output of the We assume that the dither signal is statistically indepen-
quantizing system resulting in perceptually preferable out- dent of the input signal so that the conditional probability
puts. In the 1970s this technique was adapted for speedlensity function(PDP of v given x is simply Pox(V:X)
coding[6]. In such schemes, the dither was subtracted afte=p (v). Then thenth moment of the system output given
the quantization operation, a technique knowrsaistractive  the system inputE[y"|x], is given by
dithering The first theoretical examination of this technique
was undertaken by Schuchman in 1964 with refinements ap- %
pearing sporadically until the presdimt-9]. E[y”|x](x)=f Q"(x+v)p,(»)dv=Q"(X)*p,(—X),
Nonsubtractive ditheringchemes, in which the dither is o )
not subtracted following quantization, are the subject of
more recent scholarly interest. The first investigations OKg(here* denotes the convolution operation. In particular, the
such systems were undertak_en in the Iate_z 1970s and ear ther-averaged transfer characteristid1] E[y|x] allows
1980s[10], but were not published. The primary results re-
garding these systems were published in the mid 1980s by dither. v
Vanderkooy and Lipshitg11], who later published the first o quantizer
thoroughgoing mathematical treatments with Wannamaker input % output
[8,9,12,13. A major theoretical treatment of the subject has e v Q —y=§+s
also been published by Stockham and Gra4.
We will now proceed to demonstrate that dithered quan- FIG. 1. Schematic of a typical nonsubtractively dithered quan-
tizing systems display the behavior known as stochastic resaizing system.
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FIG. 3. E[y|x](x),0=x=<A, for various normalized peak-to-

FIG. 2. (a) Peak amplitude of fundamental|, and(b) output  peak dither amplitudey in a nonsubtractively dithered quantizing
signal-to-noise ratio as functions of normalized peak-to-peak dithesystem. Note that all lines display reflection symmetry through
amplitudey for a nonsubtractively dithered quantizing system with (0.5,0.5. The line for any nonzero integral value of coincides
sinusoidal input of peak amplitud®/4. with the straight line shown foy=1.0.

straightforward calculation of the expected value of the out- L . : 1 . i
put as a function of timey=E[y|x](x(t)), when x(t) is peak-to-peak dither amplitudg For y<3, there is no out

Kknown put since the sum of the dither and signal is so small that it is

If x(t) is a periodic time function, they is a cyclosta- invariably quantized to zero.'As the Q|ther amplltude in-
" tochast — . iodic funcii ¢ creases, however, the SNR rises, attains a maximum value
lonary Stochastic process ayd_t) IS & periodic .un.c 1on o and subsequently decays in the manner characteristic of a
time which may be expanded in a Fourier series:

system exhibiting stochastic resonance.
This result is qualitatively unchanged for any choice of

M ¢

y(t)= c,el2miT, continuous dither PDF, but the choice of a uniform PDF has
n=-= special implications for this nonlinearity. In particular, we
whereT is the period of the input signal. The Fourier coef- Observe that, for integral values of 2c,|=A/4=A, so that
ficientsgn are given by y(t)=x(t). In fact, when this dither signal is useg(t)
=x(t) for arbitrary input signals[8,13]. This is demon-
— 17— 2muT strated by Fig. 3, which shov& y|x](x), as computed from
C“_Tfo y(te dt. Eq. 2, for various values oj. For y=1 the dither-averaged

transfer characteristic is a straight line through the origin
The power in thenth harmonic ofy(t) is given by 4c,|2. with a slope of unity11,3]. In this case, an arbitrary periodic
While the variance o is a function of time, whex(t) is  signal is precisely recoverable from the system output by
periodic we may associate its average second moment overeraging over a large number of periods. We observe that
an integral number of periodgall it m;) with the average for y=1.4 the average input-output gain of the system is
output signal power. _ _ greater than unity for inputs smaller in magnitude tham0.5
Consider a sinusoidal input signet) =Asin(2at/T). As \ iep explains how £,|>A=0.25\ in the corresponding
a simple measure of output S|gna£to-n0|sg rABNR) We  ooime of Fig. 2a). We conclude that the phenomenon of
use the power in the fundamental yfft) relative to the rest  gigchastic resonance in dithered quantizing systems is a di-

of the power in the output signal: rect consequence of the statistical modification of the transfer
2|2 characteristic associated with dithering. As the characteristic

SNR=|C—1|_. 3) approaches linearity, the proportion of the output signal

m,— 2|c,|? which is coherent with the input increases, resulting in a

) ) o _ _ ) SNR curve which rises until the increasing output noise
Let us consider uniformly distributed dithers; i.e., dithers|aye| associated with the increasing dither amplitude, causes

with PDFs of the form the curve to fall once again.
1 YA VA A more thorough and sophisticated analysis of nonsub-
—, <= tractively dithered quantizers can be found [8,12-14.
p(v)=1 7A 2 2 4 Many unexpected and important results can be proven for
0 otherwise. such systems, including formulas for moments, autocorrela-

_ o _ _ tion functions, and power spectra of the total error and sys-
For a sinusoidal input of peak amplitude=A/4, Fig. 2 tem output. Here we mention only the very striking result
plots both 2c,| and output SNR as a function of normalized that practical dither signals exist that render any desired mo-
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(a) available. The topology shown is one of convenience for
10 ((d)y=02 ——— analytical purposes. Obviously, if the dither is added prior to
the leading attenuation, then a dither width 61/
(1— a)]A will be required in order to linearize the quantizer.
If the quantizerQ is replaced by a signum functigne., a
00 comparator of peak-to-peak heighh, a Schmitt trigger or
o 0.0 1.0 hysteretic threshold nonlinearity is modeled. The behavior of
Input {units of A) this system is similar to that shown in Fig.(dpart from a
(e) y=0.6 translation of the curves by A/2 along each of the axes in
order to place the center of the quantizer’s vertical step edge
at the origin as long as the magnitude of the input signal
does not exceed Ra—y)/(1— a)(A/2), since in this case
the nonlinearity can be regarded as a quantizer of which only
0.0 1.0 0.0 10 a single step is being exercised.
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IV. ARBITRARY STATIC NONLINEARITIES

1.0 ffhv=1.0

1.0 f(¢) ¥=011
Arbitrary static nonlinearities may also be analyzed using

the approach of Sec. Il. The nonlineariyof Eq. 1 can be
replaced by an arbitrary function and the conditional output
0.0 moments subsequently computed using Eq. 2. Conditional
0.0 1.0 0.0 1.0 moments of the total error can then be computed by expand-

Input {units of A) Input (units of 4) ing E[e|x]=E{[Q(x+v)—x)]™x}. Expressions for the
) _ ) system output and total error distributions can be computed

aveFr;G' 4. (@ Hysteretic guantizer mOd.el a.”d?>-<” ‘.j'ther' whenever it is possible to characterizg,, andp,,,, respec-

ged transfer characteristics for quasistatic input signals Confl'vely. These, in turn, allow the computation of closed-form

Egt‘:ndalti);’e?mg;?(t_'gj Uez'lz%r‘:]”';‘t)l;?'};i:('jsig;?é‘;e:t ?A:‘ﬁrs Z: I\zla Ef‘{'gfus moment expressions. For instance, consider a threshold non-
p p plitude pp linearity, Q(w) = (A/2)[ 1+ sgnfw—Q)]. By inspection,

each ploy, with =0.2 and G=x<A.

Output (units of A)

Qutput (units of A)

0.0

_ 1
ments of the total error independent of the input signal. Such Pyjwl(y,W) = 2 [1—sgriw—Q)]5(y)
dither signals are now commonly used when processing digi- +ir14 —O)18(v—A
tal audio signals. 2 [1+sgriw=()]oly—4),
so that
IIl. HYSTERETIC QUANTIZERS
Figure 4a) shows a schematized discrete-time model of a py(y) = f Pyjw(Y, W) py(W)dw
hysteretic quantizer that exhibits stochastic resonance. It -
consists of a quantize® in a feedback loop with a single- =F,(Q)8(y)+[1—F,(Q)]8(y—A),

sample delay timer of arbitrary size introduced to provide

the memory necessary to simulate hysteresis. The model {ghereF,, is the cumulative distribution function af. Cal-

appropriate for input signal bandwidths restricted to frequenculation of moment expressions is now straightforward and

cies much less than 4/ at which frequencies the input- conditional moment expressions can be obtained by substi-

output gain of the circuit is unity. The width of the hysteresistuting p,,(w) = Pwix(W,X) =p,(W—X):

loop is[a/(1—a)]A,0< a<1 whereA is the step width of

the quantizer. Figure 4 also shows dither averaged transfer E[y"x](X)=A"1-F,(Q—Xx)].

characteristics, generated through simulation, associated with

this system for quasistatic inputs. We observe that the hysWith a dither noise uniformly distributed according to Eq. 4,

teresis loops disappear from the characteristic when ththis becomes

dither width exceeds the hysteretic widite., wheny=«)

since no input value exists for which irreversible transitions 0, x<Q—vyA/2

in the output are possible. The complete linearization of the m _AM _ 1 —Ql<

system wheny=1 is predictable, since we know from Sec. E[y"IX]00=ATX | Uyd) (- Q)+3, pO<yA2

Il above that the quantizer block behaves linearly whenever 1, x>Q+yA/2.

its input contains an independent dither component of this o

width. The requirement of independence implies that theNote that fory=1 we havey(t)=x(t)—Q+A/2 so long as

dither noise must be independent and identically distributedix(t) —Q|=<A/2 for all t. This is hardly surprising insofar as

(IID), since otherwise the dependence between successitiee dithered nonlinearity may be regarded as a single step

dither values will appear via the feedback path as deperextracted from dtranslatedl dithered quantizer staircase un-

dence between the dither and rest of the quantizer input. der these conditions. Of course, similar computations can be
We note that in a real physical system the option of addperformed for the total error signal if a detailed description

ing the dither after the leading (1«) gain reduction is un- of its distribution is desired.
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2 10— tion in Eq. 2 of the nonlinear transfer characteristic with a

« 1 continuous dither PDF corresponds to a local weighted-

2 average or smoothing of the characteristic, with larger dither

f.z 01 amplitudes resulting in greater smoothing. An increase in

g 001 output signal power is to be expected with increasing dither

@ 0001 amplitude whenever the magnitude of the averaged transfer
o 1 2 3 4 characteristic undergoes an attendant increase at those input
Dither Amplitude (units of A) values where the input signal resides for a significant amount

° 10 of time. For instance, considered as an ensemble, the values

3 1 (0) of a sinusoid with peak amplitud& have a PDF of the form

[

§ o1 0 (mJA>=x?), |x|<A

, . Py(X) = .

[=]

Z o001 0 otherwise,

c

& 0.001 o T 2 s 4 which becomes large in the neighborhoods sf+ A. When

an increase occurs in the magnitude of the dither-averaged
) _ _ ) ~transfer characteristic in these neighborhoods, a concomitant

FIG. 5. Output S|gnal-t_o-n0|se ratio as gfun_ctlon of norma_1I|zedincrease in output signal power is expected. This has already
peak-to-peak dither amplitude for the nonlinearity of Eq. 5 with heen observed in association with dithered quantizers in Sec.

uniformly distributed dither and sinusoidal inputs of peak ampli- Il. It is particularly well illustrated by the “doublet’-like
tudes(a) A/4 and(b) A. nonlinearity

Dither Amplitude {units of A)

Although this approach is clearly useful from a practical -1, —i<w<o0
standpoint, it is our experience that the many elegant theo- _ 1
retical results regarding dithered quantizers usually have no Qw)=1 1, 0<w<; ®)
counterparts for other dithered nonlinearitiébe use of 0 otherwise,
characteristic function§8,13] in particular being generally
fruitless. It is the highly regular form of the quantizer non- which displays stochastic resonance with sinusoidal inputs
linearity that allows for so many surprising results. for certain input amplitudes only, revealing the complete in-
appropriateness of the term “resonance” for this phenom-
enon. In particular, smoothing of this characteristic near
=0 decreases its magnitude there, attenuating small inputs,
The question remains as to when stochastic resonanaeghile increasing its magnitude fdx|>A/2, thereby ampli-
should be expected in a given static nonlinear system. Thiying large inputs(see Fig. 5. In most instances it is simi-
most important contributing factor seems to be the occurlarly possible to predict the appearance of stochastic reso-
rence of maxima in the numerator of Eq. 3, these typicallynance in other static nonlinear systems by considering the
being amplified by attendant decreases in the denominator &ffect upon input signals of dither averaging the nonlinear
the output signal power|2;|? increases. Now, the convolu- transfer characteristic.
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