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Stochastic resonance as dithering

Robert A. Wannamaker, Stanley P. Lipshitz, and John Vanderkooy
Guelph-Waterloo Physics Institute, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

~Received 19 May 1999!

A direct correspondence is demonstrated between the phenomenon of ‘‘stochastic resonance’’ in static
nonlinear systems and the dithering effect well known in the theory of digital waveform coding. It is argued
that many static systems displaying stochastic resonance are forms of dithered quantizers, and that the exis-
tence or absence of stochastic resonance in such systems can be predicted from the effects of ‘‘dither averag-
ing’’ upon their transfer characteristics. Also, results are introduced regarding stochastic resonance in certain
nonlinear systems with memory~e.g., hysteretic systems!.

PACS number~s!: 05.40.2a, 02.50.2r, 07.05.Hd, 07.50.Qx
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I. INTRODUCTION

The term ‘‘stochastic resonance’’ is associated with
unexpected increase in output signal-to-noise ratio obse
in certain nonlinear static or dynamical systems as the n
level at the system input increases. This usage dates ba
the 1981 work of Benziet al.@1# in climatic dynamics. Later
the effect was observed in a variety of physical and biolo
cal systems from ring lasers to neurons@2#. However, the
important distinction between stochastic resonance in
namical versus static nonlinear systems has only been re
nized relatively recently, with Gammaitoni@3# being the first
author to directly acknowledge the correspondence betw
stochastic resonance and the dithering effect in static
tems, and that no true resonanceper seexists in such sys-
tems. Recently, a thorough theoretical treatment of st
nonlinear systems has been published by Chapeau-Blon
@4#.

Quantization operations are required wherever it is nec
sary to reduce the precision of data prior to storage or tra
mission, as upon analog-to-digital conversion or arithmet
rounding of digital signals. As early as 1962@5#, engineers
working in the field of picture coding discovered that t
addition of random noise ordither prior to gray-scale quan
tization could modify the statistical character of the attend
error ~the difference between the input and output of t
quantizing system!, resulting in perceptually preferable ou
puts. In the 1970s this technique was adapted for spe
coding @6#. In such schemes, the dither was subtracted a
the quantization operation, a technique known assubtractive
dithering. The first theoretical examination of this techniq
was undertaken by Schuchman in 1964 with refinements
pearing sporadically until the present@7–9#.

Nonsubtractive ditheringschemes, in which the dither i
not subtracted following quantization, are the subject
more recent scholarly interest. The first investigations
such systems were undertaken in the late 1970s and e
1980s@10#, but were not published. The primary results r
garding these systems were published in the mid 1980s
Vanderkooy and Lipshitz@11#, who later published the firs
thoroughgoing mathematical treatments with Wannama
@8,9,12,13#. A major theoretical treatment of the subject h
also been published by Stockham and Gray@14#.

We will now proceed to demonstrate that dithered qu
tizing systems display the behavior known as stochastic r
PRE 611063-651X/2000/61~1!/233~4!/$15.00
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nance, and that this phenomenon corresponds to the dithe
effect as it is conventionally understood. We will not unde
take to compare subtractive and nonsubtractive dithe
schemes here~see@8,9,13#!, but will restrict our discussion to
nonsubtractive schemes as these are more directly analo
to the stochastic resonance systems discussed in the phy
literature.

II. DITHERED QUANTIZING SYSTEMS

Figure 1 shows a typical nonsubtractively dithered qu
tizing system withsystem input x, additivedither n, quan-
tizer input w5x1n, system output y5Q(w), and total er-
ror «5y2x. We will assume a~multilevel! quantizer of the
midtread variety with transfer characteristic

Q~w!5D b w

D
1

1

2 c, ~1!

where the ‘‘floor’’ operatorb c returns the greatest intege
less than or equal to its argument.~Other common quantize
characterisitics can be treated similarly.! The quantizer step
size D is commonly referred to as a LSB~least significant
bit!, since a change in input signal level of one step wid
corresponds to a change in the LSB of binary coded out

We assume that the dither signal is statistically indep
dent of the input signal so that the conditional probabil
density function~PDF! of n given x is simply pnux(n,x)
5pn(n). Then thenth moment of the system output give
the system input,E@ynux#, is given by

E@ynux#~x!5E
2`

`

Qn~x1n!pn~n!dn5Qn~x!* pn~2x!,

~2!

where* denotes the convolution operation. In particular, t
dither-averaged transfer characteristic@11# E@yux# allows

FIG. 1. Schematic of a typical nonsubtractively dithered qu
tizing system.
233 ©2000 The American Physical Society
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straightforward calculation of the expected value of the o
put as a function of time,ȳ5E@yux#„x(t)…, when x(t) is
known.

If x(t) is a periodic time function, theny is a cyclosta-
tionary stochastic process andȳ(t) is a periodic function of
time which may be expanded in a Fourier series:

ȳ~ t !5 (
n52`

`

c̄nej 2pnt/T,

whereT is the period of the input signal. The Fourier coe
ficients c̄n are given by

c̄n5
1

TE0

T

ȳ~ t !e2 j 2pnt/Tdt.

The power in thenth harmonic ofȳ(t) is given by 2uc̄nu2.
While the variance ofy is a function of time, whenx(t) is
periodic we may associate its average second moment
an integral number of periods~call it m2) with the average
output signal power.

Consider a sinusoidal input signalx(t)5A sin(2pt/T). As
a simple measure of output signal-to-noise ratio~SNR! we
use the power in the fundamental ofȳ(t) relative to the rest
of the power in the output signal:

SNR5
2uc̄1u2

m222uc̄1u2
. ~3!

Let us consider uniformly distributed dithers; i.e., dithe
with PDFs of the form

pn~n!5H 1

gD
, 2

gD

2
,n<

gD

2

0 otherwise.

~4!

For a sinusoidal input of peak amplitudeA5D/4, Fig. 2
plots both 2uc̄1u and output SNR as a function of normalize

FIG. 2. ~a! Peak amplitude of fundamental 2uc̄1u, and~b! output
signal-to-noise ratio as functions of normalized peak-to-peak di
amplitudeg for a nonsubtractively dithered quantizing system w
sinusoidal input of peak amplitudeD/4.
t-

er

peak-to-peak dither amplitudeg. For g, 1
2 , there is no out-

put since the sum of the dither and signal is so small that
invariably quantized to zero. As the dither amplitude i
creases, however, the SNR rises, attains a maximum v
and subsequently decays in the manner characteristic
system exhibiting stochastic resonance.

This result is qualitatively unchanged for any choice
continuous dither PDF, but the choice of a uniform PDF h
special implications for this nonlinearity. In particular, w

observe that, for integral values ofg, 2uc̄1u5D/45A, so that

ȳ(t)5x(t). In fact, when this dither signal is used,ȳ(t)
5x(t) for arbitrary input signals@8,13#. This is demon-
strated by Fig. 3, which showsE@yux#(x), as computed from
Eq. 2, for various values ofg. For g51 the dither-averaged
transfer characteristic is a straight line through the ori
with a slope of unity@11,3#. In this case, an arbitrary periodi
signal is precisely recoverable from the system output
averaging over a large number of periods. We observe
for g51.4 the average input-output gain of the system
greater than unity for inputs smaller in magnitude than 0.5D,

which explains how 2uc̄1u.A50.25D in the corresponding
regime of Fig. 2~a!. We conclude that the phenomenon
stochastic resonance in dithered quantizing systems is a
rect consequence of the statistical modification of the tran
characteristic associated with dithering. As the characteri
approaches linearity, the proportion of the output sig
which is coherent with the input increases, resulting in
SNR curve which rises until the increasing output no
level, associated with the increasing dither amplitude, cau
the curve to fall once again.

A more thorough and sophisticated analysis of nons
tractively dithered quantizers can be found in@8,12–14#.
Many unexpected and important results can be proven
such systems, including formulas for moments, autocorr
tion functions, and power spectra of the total error and s
tem output. Here we mention only the very striking res
that practical dither signals exist that render any desired

er

FIG. 3. E@yux#(x),0<x<D, for various normalized peak-to
peak dither amplitudesg in a nonsubtractively dithered quantizin
system. Note that all lines display reflection symmetry throu
~0.5,0.5!. The line for any nonzero integral value ofg coincides
with the straight line shown forg51.0.
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ments of the total error independent of the input signal. S
dither signals are now commonly used when processing d
tal audio signals.

III. HYSTERETIC QUANTIZERS

Figure 4~a! shows a schematized discrete-time model o
hysteretic quantizer that exhibits stochastic resonance
consists of a quantizerQ in a feedback loop with a single
sample delay timet of arbitrary size introduced to provid
the memory necessary to simulate hysteresis. The mod
appropriate for input signal bandwidths restricted to frequ
cies much less than 1/t, at which frequencies the input
output gain of the circuit is unity. The width of the hysteres
loop is @a/(12a)#D,0<a,1 whereD is the step width of
the quantizer. Figure 4 also shows dither averaged tran
characteristics, generated through simulation, associated
this system for quasistatic inputs. We observe that the h
teresis loops disappear from the characteristic when
dither width exceeds the hysteretic width~i.e., wheng>a)
since no input value exists for which irreversible transitio
in the output are possible. The complete linearization of
system wheng51 is predictable, since we know from Se
II above that the quantizer block behaves linearly whene
its input contains an independent dither component of
width. The requirement of independence implies that
dither noise must be independent and identically distribu
~IID !, since otherwise the dependence between succes
dither values will appear via the feedback path as dep
dence between the dither and rest of the quantizer input

We note that in a real physical system the option of a
ing the dither after the leading (12a) gain reduction is un-

FIG. 4. ~a! Hysteretic quantizer model and~b!–~f! dither-
averaged transfer characteristics for quasistatic input signals c
puted by simulation using uniformly distributed dithers of vario
normalized peak-to-peak amplitudesg ~indicated at the upper left o
each plot!, with a50.2 and 0<x<D.
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available. The topology shown is one of convenience
analytical purposes. Obviously, if the dither is added prior
the leading attenuation, then a dither width of@1/
(12a)#D will be required in order to linearize the quantize

If the quantizerQ is replaced by a signum function~i.e., a
comparator! of peak-to-peak heightD, a Schmitt trigger or
hysteretic threshold nonlinearity is modeled. The behavio
this system is similar to that shown in Fig. 4~apart from a
translation of the curves by2D/2 along each of the axes i
order to place the center of the quantizer’s vertical step e
at the origin! as long as the magnitude of the input sign
does not exceed (22a2g)/(12a)(D/2), since in this case
the nonlinearity can be regarded as a quantizer of which o
a single step is being exercised.

IV. ARBITRARY STATIC NONLINEARITIES

Arbitrary static nonlinearities may also be analyzed us
the approach of Sec. II. The nonlinearityQ of Eq. 1 can be
replaced by an arbitrary function and the conditional out
moments subsequently computed using Eq. 2. Conditio
moments of the total error can then be computed by expa
ing E@«ux#5E$@Q(x1n)2x)#mux}. Expressions for the
system output and total error distributions can be compu
whenever it is possible to characterizepyuw andp«uw , respec-
tively. These, in turn, allow the computation of closed-for
moment expressions. For instance, consider a threshold
linearity, Q(w)5(D/2)@11sgn(w2V)#. By inspection,

pyuw~y,w!5 1
2 @12sgn~w2V!#d~y!

1 1
2 @11sgn~w2V!#d~y2D!,

so that

py~y!5E
2`

`

pyuw~y,w!pw~w!dw

5Fw~V!d~y!1@12Fw~V!#d~y2D!,

whereFw is the cumulative distribution function ofw. Cal-
culation of moment expressions is now straightforward a
conditional moment expressions can be obtained by sub
tuting pw(w)5pwux(w,x)5pn(w2x):

E@ymux#~x!5Dm@12Fn~V2x!#.

With a dither noise uniformly distributed according to Eq.
this becomes

E@ymux#~x!5Dm3H 0, x,V2gD/2

~1/gD! ~x2V!11
2, ux2Vu<gD/2

1, x.V1gD/2.

Note that forg51 we haveȳ(t)5x(t)2V1D/2 so long as
ux(t)2Vu<D/2 for all t. This is hardly surprising insofar a
the dithered nonlinearity may be regarded as a single
extracted from a~translated! dithered quantizer staircase un
der these conditions. Of course, similar computations can
performed for the total error signal if a detailed descripti
of its distribution is desired.

m-
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Although this approach is clearly useful from a practic
standpoint, it is our experience that the many elegant th
retical results regarding dithered quantizers usually have
counterparts for other dithered nonlinearities~the use of
characteristic functions@8,13# in particular being generally
fruitless!. It is the highly regular form of the quantizer non
linearity that allows for so many surprising results.

V. PREDICTING STOCHASTIC RESONANCE

The question remains as to when stochastic resona
should be expected in a given static nonlinear system.
most important contributing factor seems to be the occ
rence of maxima in the numerator of Eq. 3, these typica
being amplified by attendant decreases in the denominato
the output signal power 2uc̄1u2 increases. Now, the convolu

FIG. 5. Output signal-to-noise ratio as a function of normaliz
peak-to-peak dither amplitudeg for the nonlinearity of Eq. 5 with
uniformly distributed dither and sinusoidal inputs of peak amp
tudes~a! D/4 and~b! D.
t.,
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tion in Eq. 2 of the nonlinear transfer characteristic with
continuous dither PDF corresponds to a local weight
average or smoothing of the characteristic, with larger dit
amplitudes resulting in greater smoothing. An increase
output signal power is to be expected with increasing dit
amplitude whenever the magnitude of the averaged tran
characteristic undergoes an attendant increase at those
values where the input signal resides for a significant amo
of time. For instance, considered as an ensemble, the va
of a sinusoid with peak amplitudeA have a PDF of the form

px~x!5H 1/~pAA22x2! , uxu,A

0 otherwise,

which becomes large in the neighborhoods ofx56A. When
an increase occurs in the magnitude of the dither-avera
transfer characteristic in these neighborhoods, a concom
increase in output signal power is expected. This has alre
been observed in association with dithered quantizers in S
II. It is particularly well illustrated by the ‘‘doublet’’-like
nonlinearity

Q~w!5H 21, 2 1
2 ,w,0

1, 0,w,1
2

0 otherwise,

~5!

which displays stochastic resonance with sinusoidal inp
for certain input amplitudes only, revealing the complete
appropriateness of the term ‘‘resonance’’ for this pheno
enon. In particular, smoothing of this characteristic neax
50 decreases its magnitude there, attenuating small inp
while increasing its magnitude foruxu.D/2, thereby ampli-
fying large inputs~see Fig. 5.! In most instances it is simi-
larly possible to predict the appearance of stochastic re
nance in other static nonlinear systems by considering
effect upon input signals of dither averaging the nonline
transfer characteristic.
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